A numerical method for an approximate minimax estimator in linear regression
نویسندگان
چکیده
منابع مشابه
Nearly Optimal Minimax Estimator for High Dimensional Sparse Linear Regression
We present estimators for a well studied statistical estimation problem: the estimation for the linear regression model with soft sparsity constraints (`q constraint with 0 < q ≤ 1) in the high-dimensional setting. We first present a family of estimators, called the projected nearest neighbor estimator and show, by using results from Convex Geometry, that such estimator is within a logarithmic ...
متن کاملApproximate Confidence Regions for Minimax-Linear Estimators
Minimax estimation is based on the idea that the quadratic risk func tion for the estimate is not minimized over the entire parameter space IR but only over an area B that is restricted by a priori knowledge If all restrictions de ne a convex area this area can often be enclosed in an ellipsoid of the form B f T rg The ellipsoid has a larger volume than the cuboid Hence the transition to an e...
متن کاملMinimax designs for approximately linear regression
We consider the approximately linear regression model E b 1x1 = I(x) 0 + f(x), XE S, where f(x) is a non-linear disturbance restricted only by a bound on its &(S) norm, and where S is the design space. For loss functions which are monotonic functions of the mean squared error matrix, we derive a theory to guide in the construction of designs which minimize the maximum (over f) loss. We then spe...
متن کاملMinimax Fixed-Design Linear Regression
We consider a linear regression game in which the covariates are known in advance: at each round, the learner predicts a real-value, the adversary reveals a label, and the learner incurs a squared error loss. The aim is to minimize the regret with respect to linear predictions. For a variety of constraints on the adversary’s labels, we show that the minimax optimal strategy is linear, with a pa...
متن کاملA Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems
In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1992
ISSN: 0024-3795
DOI: 10.1016/0024-3795(92)90212-s